Nonspecific Defense

- **Barriers** – first line of defense
 - **Physical (anatomical) barriers**
 - Skin
 - Mucous membranes
 - Respiratory cilia
 - **Chemical barriers** – antimicrobial properties factors contained in:
 - Secretions from sebaceous and sweat glands give the skin a pH ranging from 3 to 5,
 - Lysozymes in:
 - Mucus
 - Tears
 - Saliva
 - HCl
 - **Biological barriers** – the actual presence of symbionts prevents other microbes from establishing residence

- **INNATE IMMUNITY**
 - Recognition of traits shared by broad ranges of pathogens, using a small set of receptors
 - Rapid response

- **Barrier defenses:**
 - Skin
 - Mucous membranes
 - Secretions

- **Internal defenses:**
 - Phagocytic cells
 - Antimicrobial proteins
 - Inflammatory response
 - Natural killer cells

- **ACQUIRED IMMUNITY**
 - Recognition of traits specific to particular pathogens, using a vast array of receptors
 - Slower response

- **Humoral response:**
 - Antibodies defend against infection in body fluids.

- **Cell-mediated response:**
 - Cytotoxic lymphocytes defend against infection in body cells.
Inflammatory response – second line of defense when first line breached by bacteria for example
 - Locally - cells in area of breach release mast cells histamines and other chemicals which:
 - Increase blood flow to area
 - Localized temperature
 - Increase permeability of capillary endothelium
 - Fluid accumulates – swelling
 - White blood cells (macrophages, neutrophils and macrophages) squeeze through the wall of blood vessels into tissue
 - Engulf invading bacteria literally killing microbes and eventually self
 - Neutrophils 60-70% of leukocytes in blood (short-lived)
 - Monocytes 5% of leukocytes in blood enter tissue to become macrophages (long-lived)
 - Release chemicals
 - Chemokines – attract more phagocytes
 - Interleukin – stimulates cells associated with immune response to proliferate
 - Lactoferrin – directly kills bacteria
 - Endogenous pyrogen – trigger release of prostaglandins that increase set point for “thermostat” in hypothalamus
 - Clotting cascade walls off area
 - Symptoms – area becomes swollen, hot, red and painful; pus may form
 - Systemic changes – to prevent microbes such as bacteria from spreading beyond local area
 - Fever
 - Proliferation of phagocytic white blood cells (elevated WBC count)
• Role of lymph system

- Some macrophages migrate throughout the body
- Others reside permanently in certain tissues, including the lung, liver, kidney, connective tissue, brain, and especially in lymph nodes and the spleen
- The fixed macrophages in the spleen, lymph nodes, and other lymphatic tissues are particularly well located to contact infectious agents
 - Interstitial fluid taken up by lymphatic capillaries, flows as lymph, eventually returning to the blood circulatory system
 - Along the way, lymph must pass through numerous lymph nodes, where any pathogens present encounter macrophages and lymphocytes
 - Also, microorganisms, microbial fragments, and foreign molecules that enter blood encounter macrophages when they become trapped in netlike architecture of spleen

• Interferons
 - Produced in response to viral infections
 - Do not act directly on the invading viruses but rather stimulate the body’s own cells to resist
 - Three different classes of interferons – all small proteins
 - Cells attacked by viruses release interferon – doesn’t help the cell but binds to other cells to:
 - Stimulate healthy cells to produce antiviral enzymes that block viral reproduction.
 - Stimulate certain white blood cells involved in both inflammatory & immune responses

Immune System – Specific Response
• Antibody mediate immunity
 - B lymphocytes or B cells
 - Produced in red bone marrow
 - Capable of producing antibodies (immunoglobulins)
 - Production triggered by presence of antigens – chemicals (usually foreign protein or polysaccharides) that the body recognizes as “not self”
 - Surface proteins and polysaccharides of cell of foreign cell
 - Proteins such as toxins produced by pathogens
 - Antibodies “fit” antigens and bind to them - very specific
Action

- Inactive B cells circulate everywhere (about 2 trillion present at any one time)
- Antigen receptors protrude from surface of B cells can match up to specific antigen
- Problem: huge number of possible antigens – would need incredible numbers of B cells to be able to fight all possible antigens
- Solution – activation of a few inactive B cells for a particular antigen – clonal selection

- Come in contact with antigen – cell enlarges and begins synthesizing proteins
- Under the influence of a prostaglandin called interleukin (il-2), cells divide rapidly to make many more of this particular B cell which begins to differentiate into two types of B cell -
 - Plasma or effector cells – specialized to synthesize and secrete antibodies (3,000 – 30,000 molecules/sec.) Which are released into blood – short lived cells
 - Memory cells – long lived cells that are responsible for immunity to future infections
- **Types of immunity**
 - Active
 - Natural – experience with actual pathogen
 - Artificial – vaccines
 - Passive
 - Natural – transfer of antibodies from mother to fetus/baby
 - Artificial – antitoxins, immunoglobulin shots
- **Structure and action of antibodies**
 - Y shaped
 - Heavy and light chains
 - Constant and variable regions
 - An antibody interacts with a small, accessible portion of the antigen called an epitope or antigenic determinant
 - A single antigen such as a bacterial surface protein usually has several effective epitopes, each capable of inducing the production of specific antibody
 - 5 classes of immunoglobulins are made
 - Action
Cell-mediated immunity

- T lymphocytes or T cells – attack eukaryote cells
 - Two primary types
 - Destroyers of foreign eukaryote cells (e.g. parasites) and body’s own cells
 - Cytotoxic T (T_C) cells (CD8 glycoprotein on surface)
 - Regulators of the immune response
 - Helper T cells (T_H) (CD4 glycoprotein on surface) – HIV attacks these!
- Produced in red bone marrow during development but move to thymus where they differentiate
- Like B cells very specific; mature in a similar fashion to B cells (memory and plasma cells) but role played is different – do not make antibodies
- Recognition not based on antigens on surface of cells but on special glycoproteins found on surface of eukaryote cells – coded by genes called MHC
 - As many as twenty different types
 - Many different versions of each type
 - Many possible combinations – no two humans likely to have same combination except identical twins
- Tissue typing and transplant rejection
 - Two types
 - Class I MHC – found throughout body – recognized by T_C cells
 - Class II MHC – found only on immune system cells – recognized by T_H cells

Functions of T cells

- Cytotoxic T cells – how do we destroy foreign cells or our own infected cells (e.g., cells infected with viruses)
- Foreign cells have foreign class I MHCs – infected cells have class I MHCs that have been modified by antigen
- Receptor on inactive cytotoxic T cell matches to these MHCs
- Activation, proliferation and differentiation produce active cytotoxic T cells and memory cells
- Active cytotoxic T cells bind to class I MHCs and lyse the cell
- Active cytotoxic T cells also make lymphokines, another prostaglandin
 - Lymphokines attract macrophages which clean up debris and destroy things such as viruses that were in the infected cell
- Helper T cells – react to modified class II MHCs found on surface of macrophages or B cells that have encountered foreign microorganisms
 - Inactive T cell encounters modified (by presence of antigen) class II MHC on surface of macrophage or inactive B cell
 - Activation, proliferation and differentiation produce active helper T cells and memory cells
 - Active helper T cells secrete interleukins which stimulate cytotoxic T cells and B cells following their activation

- Active helper T cells are also essential in directly establishing full activation of B cells
HIV knocks out these T helper cells and therefore immune response greatly diminished

- Rare cancers karposi’s sarcoma – compromised cytotoxic T cell production
- Rare infections compromised B cell production